Intuitive Models and Visualization in Informatics Education

Michael Weigend michael.weigend@uni-muenster.de University of Münster

Vilnius 2010

Intuitive Model

Outline

- 1 Intuitive model
- 2 Research methods
- Exercise –
- 3 Some basic Intuitive models in informatics
- 4 Intuitive Modeling (understanding programs by visualizing them)
- 5 Visualizations and classroom activities

1 Intuitive Model

Fischbein (1987): Intuition

diSessa (2001): Phenomenological primitive (p-prim)

- Declarative knowledge
- Subjective certainty and self evidence
- Gestalt
- Persistency

Subjective Certainty

... based on experience in well known domains

Gestalt

Gestalt = a perceived hole entity

Wertheimer

"... this program works like hive of bees, going out for pollen and bringing it back to the hive"

Ron Jeffries: What is Extreme Programming? 2001

Certain knowledge about containers

You can put something into a container

The thing in the container still exists

When you search a thing search for the container, it is stored in

A thing remains in a container until someone takes it off

. . .

Piaget: object permanence

Simplicity and cognitive load

Was is the idea of a vending machine?

Only 5 chunks of information in working memory Baddeley, Dehn 2008

Unconscious, compulsive

"Which forces are acting on the coin in point B"

Clement 1982

Persistency

Example:

Exhaustion of the container model for arrays (lists)

"Which model would you use to explain this?"

Exhaustion

s = [1, 1, 1] t = s s[0] = 5

70 students (16 f 54 m), 2006

Modeling in natural science

reality

model

Goal: Structural feasability

Modeling in informatics (OOP)

Reality

Model
Book
ID dateOfReturn
returnBook

Goals: Efficiency, Controllability of complexity

Cultivated intuitive Models in Informatics

- Stack
- Queue
- Dictionary
- Scan Line
- Loop
- Switch (branch)
- Data flow
- "Message" in OOP

Three dimensions of representation

Metaphors

Exemplification

Conceptional Metaphors

- Not just rhetoric improvement of speech
- represent conceptional knowledge

"Arithmetic is moving objects"

Lakoff & Núnez (1997)

2 Research How to find intuitive models?

- Student explains how a program works ("teach back")
 Van der Veer 1994
- Loud thinking while problem solving
- Interviews
- Analysis of programming mistakes

Teach back

"Explain ...,

- How to search for a text document,
- How to display it on screen,
- How to save a copy
- How to print it."

van der Veer 1994

Expressive means

Text	91 %
pictures	25 %
Icons	28 %
rules	6 %
Programming code	34 %

607 student from three European countries

van der Veer 1994

Visualization exercises

double a;

a = Math.sqrt(2);

Students need to practise

Python Visual Sandbox (2006)

Idea:

Judge and use given animations in different contexts

The Python Visual Sandbox

Idea:

Judge and use given animations in different contexts

14 Workshops 2005 – 2006

In Germany and Hong Kong

International American Highschool Hong Kong

Python Visual

Problem

Four alternative models

Three questions

Observed and recorded are: decisions and decision times

Python Puzzle

Observed and recorded: For how long did they watch visual help? How many test runs? Which correct and incorrect program blocks did they use?

Python Quiz

Motivation through ...

... workshop dramaturgy

Teaching with the Python Visual Sandbox

home]

Evaluation of Changing lists

All sessions of group PVS Seminar Diesel Gymnasium Augsburg . Number of evaluated sessions: 18

Model 1	Question 1	Question 2	Question 3
	would you use to explain	do you remember best	when you imagine the execution of the script
	11 percent	6 percent	11 percent
duration: 6 sec watched: 27 sec			

Group results of a "Python Visual"

Motivation through ...

... Activity Reports

Python Visual Sandbox

Michael Weigend 17, 7, 2004 - 30, 5, 2005

[home]

Test_hans 's Activity Report

You have got -12890 points.

Activities

Python Visual	Time of first valid session	Points
Recursive function that mirrors a string. (1 valid session)	Thu Aug 25 20:33:30 2005	20
Regular expressions (2 valid sessions)	Sat Aug 20 08:01:32 2005	20
What happens, when a function returns something? (2 valid sessions)	Tue Aug 2 08:18:25 2005	20
Recursive computation of factorial (1 valid session)	Wed Jan 4 14:48:54 2006	20
Analogies for iterations (1 valid session)	Mon Apr 18 23:07:21 2005	20
Multilists (2 valid sessions)	Sat Apr 23 10:11:59 2005	20
Python Puzzle	Time of session	Points
Modeling a group	Thu May 26 22:57:50 2005	-200
Modeling a group	Thu May 26 23:14:24 2005	60

... competition

The Python Visual Sandbox

nome]

Highscores

It is Wednesday, 25. October 2006, 12:18:47. You did 3 Python Quizes and 6 Python Puzzles. Here are the highscores of these games.

Python Quiz

Modeling a group using a list of tuples.

1	420 points	jr	DEU	Thursday, 05. January 2006 11:11:27 (MET)
2	360 points	markus	DEU	Tuesday, 31. January 2006 16:38:18 (MET)
3	300 points	TE	DEU	Tuesday, 31. January 2006 16:40:40 (MET)
4	300 points	honey123	DEU	Thursday, 26. January 2006 10:13:44 (MET)
5	290 points	MeanMetal	CHN	Thursday, 05. January 2006 07:17:40 (MET)
6	285 points	asir	DEU	Saturday, 04. March 2006 14:14:32 (MET)
7	220 points	Unseensurvivor	CHN	Thursday, 05. January 2006 07:13:34 (MET)
8	220 points	vreni	DEU	Tuesday, 11. October 2005 11:59:56 (MET)
9	210 points	austrian_angela	AUT	Saturday, 04. March 2006 14:17:23 (MET)
10	210 points	Felix	DEU	Thursday, 26. January 2006 10:02:29 (MET)

V-Quiz (since 2008)

Web 2.0 technology Metaphor: Quiz Show

Roles 3 Some basic Intuitive models in informatics

Player (candidate) Designer Quiz Host Administrator

For technology nerds ...

Virtual server Turbogears Rapid Web Development Framework Python Model-View-Controller Design:

SQLObject for ORM MySQL data base

KID: Python-based templating language (XHMTL templates)

CherryPy HTTP-Server (OOP)

Let's have a look ...

3 Some basic Intuitive models in informatics

Web 2.0 technology Metaphor: Quiz Show

Roles

Player (candidate) Designer Quiz Host Administrator

3 Some basic groups of intuitive Models

- actor models
- names
- data
- functions
- control
- processing
- classes
- objects

Michael Weigend, Intuitive Modelle der Informatik Folie

Actor models

One actor

Many actors

Names

Identifying, addressing

Container versus Reference

Explicit and implicit names

```
s = [10, 4, 1, 3]
for i in range(len(s)):
   for j in range(i+1, len(s)):
        if s [j] < s[i]:
            s[i], s[j] = s[j], s[i]</pre>
```

Explaining models

2 /16 "Stepper", Sajaniemi, 2002 9 /16

No split of attention (Sweller & Chandler)

Indirect Names

Constructed from other names

Everyday life: "My brother Andi's oldest daughter's dog "

Informatics:
s[2]
object.attribute
sqrt(2)
How well do children understand naming concepts?

Der Zufallspar

Study: The Random Park

149 children, 3rd und 4th grade, Winter 2008/2009, Münster andWitten

let ein Schlid mit zwei Pfoten. Der breite Weg helbt Hauptweg und der schmatere Weg helbt Blumenweg. Zeichne an die Wege Schlider mit diesen Namen.	
Sohritt 2: Derke dir für deinen Park einen Namen aus (z.5. Aberteverland, Lauras Park). Zeichne auf das Schild mit den zwei Pibsten den Namen des Parks.	
Schritt 3: Auf dem Datenbiat ist eine Tabelle mit Tierarten. Zeichne an den Riumenwen das Tier mit der Nummer 2	Schenergeonia heist. Satenbiatt
Schritt 4: Wenn du ein Mädchen bist, zeichne das Ding mit der Nummer 7	lahre) an die richtige
inks neben den Hauptweg. Sebelik 5: Ware du ste hans hiel antebes der Oter wit die Monster 7 liebe	immer Progezahl rec
neben den Hauptweg.	e Nummer wie die M
Schritt S: Wie viele Buchstaben hat der Name deines Parks? Wenn die Anzahl kleiner als 10 ist, zeichne das Tier Nummer 4 an den linken	
Rand des Bildes. Sonst zeichne das Tier Nummer 5 an den linken Rand des Bildes.	mmer Litts + 1 miller
Sohntt 7: Frage eine Mitschülerin (Mäscher) nach einer beliebigen Zahl zwischen 5 und 9: Das ist die Mäscherzahl. Schreibe die Zahl an die richtige Stelle auf das Datenbiat.	r Nummer Jungerzal
Schrift 8: Frage einen Mitschüler (Junge) nach einer beliebigen Zahl zwischen 1 und 4: Das ist die Jungenzahl. Schreiße die Zahl an die richtige Stelle auf	diesen Park zu zeich
Schritt S. Rechne	n das Peld Schwierig
Mdochenzah - Jungenzah Das Ergebnis der Rechnung helbt Fragezahl. Schreibe die Zahl an die richtige Stelle auf das Datenbat.	du am schwierigster Icrtigen Stalien auf d
Sohritt 10: Auf dem Osterbiati ist das Zufallsfeld. Nimm einen roten Buntstift und mache mit geschlossen Augen auf dem Zufallsfald einen Punkt, Die Zahl, die dem Punkt äm nächsten ist, heitst Upg. Schreibe die Zahl an die richtige Stalle auf das Datenblatt.	n Zoo zu zeichnen? V
Schritt 11: Auf dem Daterblatt ist das Zufallsteid. Nimm einen blauen Buntstift und mache mit geschlossen Augen auf dem Zufallsteid einen Punkt. Die Zahl, die dem Punkt am nächsten ist, heißt Zack: Schreibe die Zahl an die richtige Stelfe auf dies Deterblatt.	ae stere, au ae sp

The Data sheet

Indirect names – simple access

Step 3: On the data sheet there is a table with animals. Draw animal number 2 at the Flower Street.

85% correct

Container

Step 7: Ask a girl for a random number between 5 and 9. This is the girl's number (Mädchenzahl). Write this number at the correct spot on the data sheet

98% correct

Datenblatt

7

8

Ente

Igel

Calculating with names

Step 12: Calculate Ups plus Zack. The result is called Hoppla. Write this number at the correct spot on the data

95% correct

Pointer

Step 13: Write your age at the correct spot on the data sheet.

92% correkt

The Limit

Step 18: A Bubu is a thing with number Jungenzahl. Draw a sequence of Mädchenzahl Bubus.

16% correct

Function calls as indirect names cognitive advantage when interpreting recursion

Is one step of recursion enough?

def mirror (w):
 if w == "": return w
 else: return mirror(w[1:]) + w[0]

Which model would you use to explain?

Full depth

12/30

11/30

One step

3/30

4/30

Naming as associating

string wort; wort = "Hallo";

Visualization made by a student (17)

symmetric cumulativ

Brot – bread Brot – bread – du pain

Chains of association

56%

51%

n = 154

N = 154

Functions – factories or tools?

Math.sqrt(2)

Factory

Control

- Sequence
- Data flow flow of control
- Branch
- Repetition
- Iteration
- Signal

Michael Weigend, Intuitive Modelle der Informatik Folie

Parallelizing a Sequence

Sequence perceived as a wholeness?

Flash-Film made by a 17-years-old student

Iteration

Which model would you use to explain the program?

45%

n = 66

Data processing

Begin to exist

- generate
- choose
- produce, construct

- names
- data

Annihilate

- destroy
- mark as invalid
- loose

Metamorphosis

- names
- data

Implicit destruction

n = 154

Objects Allocation of activity

bottle.fill(0.4)

Message as actor

bottle.empty()

4 Intuitive Modeling

understanding (reconstructing)
 formal program text
 by intuitive models

Michael Weigend, Intuitive Modelle der Informatik Folie

Dramatizing

int a; int b; a = 2; b = a + 3;

Storyboard

Reverse modeling

Focusing for i in [1, 5, 4, 3, 2]: print i**2

Risk: misconception

Using different models for the same thing

5 Visualization in classroom activities

1rst example: Roleplays

Algorithm eat all red shoes (paper)
if not red shoe on paper:

return paper

else:

take red shoe from paper
eat all red shoes (paper) # recursive call
eat red shoe

return paper

end

Discussion

- Which elements of the role play correspond to which part of the program?
- Which elements are decoration?
- Is the model easy to understand? Why?
- Where are differences between model and algorithm?

How to design role plays?

Objectives:

- Each participant should be active
- Clear roles, it should be possible to improvise and interpret freely the role

Care to make a workshop on role play design tomorrow?

- Try the "Processor Game" by Lars Tijsma (NL)
- Develop variations ...

2nd example: Scaffolding

Try to "read" the intuition

Experiment: The problem of the incomplete chess board

Is it possible to cover the incomplete chess board with domino blocks?

An appropriate representation

John Anderson 1996

3rd example: Visualization as "door opener"

Does not represent the whole solution, but it "opens a door" and leads to a solution

Example: How to coordinate producer and consumer processes?

Just think of a smart pipe in the middle – that's all!

Thread safe Queue

4th example: Puzzles = artificial logical bugs

Why?

Conclusion: Talk about intuitive models in class

- get deeper understanding
- improve communication
- succeed in programming

Thank you for your attention