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ABSTRACT 

We created a course that, beginning from a hypothetical shared 

light bulb as our physical layer, introduced students to a hierarchy 

of simplified versions of network protocols, including Ethernet, 

IP, and TCP. This paper describes those simplified protocols, 

along with the Java framework students used to implement and 

simulate them.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 

Science Education – computer science education. C.2.2 

[Computer-Communication �etworks]: Network Protocols – 

protocol architecture (OSI model). 

General Terms 
Algorithms, Design 

Keywords 
Network, Protocol, Simulation, TCP, IP, Ethernet, Programming 

1. I�TRODUCTIO� 
This paper describes the content of a course entitled "Network 

Programming," which we taught in the spring semesters of 2006 

and 2008 to a total of 48 high school students at The Harker 

School, an independent school in San Jose, California. In the first 

half of the course, we introduced students to simplified versions 

of low-level network protocols (Ethernet, IP, and TCP) which 

students simulated using a Java framework we provided. At the 

midpoint of the class, students used their simulated networks to 

implement their own sockets. In the second half of the course, we 

switched over to using Java's built-in support for real socket 

connections. Students worked together in small groups, using 

sockets to write their own network applications, including 

networked games, chat programs, etc. 

This paper focuses on the first part of the course–particularly the 

simplified network protocols we developed for teaching Ethernet, 

IP, and TCP. Lab-based networking courses typically fall into two 

categories:  those in which students configure and experiment 

with networks, and those in which students implement network 

protocols [4]. Because we were teaching students who were not 

likely to continue studying computer networks beyond this course, 

there was no reason to provide practical training with real network 

traffic.  Rather, we wanted to give our students a hands-on 

experience with network protocol concepts.  We therefore decided 

to have students implement low-level network protocols on a 

simulated computer network. Although a number of network 

simulation frameworks have been developed for use in teaching, 

none met the precise needs for our course. Some simulation tools 

required students to implement subsets of the TCP/IP protocols, 

which could interoperate with industry implementations [1]. 

However, we felt that this would be unnecessarily detailed and 

time-consuming work for our students, and that it might obscure 

the main concepts. Some network simulation frameworks left only 

one layer for students to implement [3], while others allowed 

students to implement multiple layers of protocols [5, 7]. But at 

their lowest level, even the most flexible network simulation tools 

we looked at were based on the transmitting and receiving of 

frames. We felt this concealed too much of the physical layer and 

its relation to the data link layer. To allow students to explore 

unreliable networks, many tools could be configured to corrupt 

and drop frames at random. Such a feature, although clearly 

beneficial, also seemed contrived. We wanted to use a simulation 

model in which collisions could arise naturally. 

In light of all this, we set out to create our own simplified protocol 

stack, spanning the layers from sockets down to bit detection. To 

minimize implementation times and remove confusing details, we 

chose to simplify common protocols so that they became small 

enough that our students could fully implement them in just half a 

semester, using our network simulation framework. Students 

would need to understand the purpose of every bit we used, so we 

wanted to reduce the protocols to their most essential features, 

focusing on those bits that really count. We made sure that 

students understood that we were omitting many details in the real 

Ethernet and TCP/IP specifications. We believe that our idealized 

protocols were more effective than the real ones for teaching our 

students to master fundamental networking concepts. 

2. PHYSICAL LAYER:  LIGHTS 
Our physical layer began from perhaps the simplest possible entity 

that could support communication:  a shared bit. This layer took 

two forms: a story about flashing lights, and a set of black-box 

Java classes that simulated those flashing lights. In the story, we 

imagine a dozen people know they will be imprisoned, one person 
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per cell. Each cell has a single light panel, featuring a light bulb, 

on/off buttons, and a unique ID number. Pressing the "on" button 

on one light panel turns on the light bulbs in every cell. Likewise, 

the "off" button turns off everyone's lights. In other words, all 

light panels are connected to a single light system, as illustrated in 

Figure 1. 

 

Figure 1. Three hypothetical light panels 

connected to a light system 

Knowing all this, the dozen people conspire to use the light 

system to communicate with each other. They know they can 

represent any information as a string of bits. We asked students to 

consider how the light panels could be used to transmit bits, and 

what difficulties would arise. The results of that discussion served 

as the basis for introducing our simplified Ethernet protocol. 

3. DATA LI�K LAYER:  ETHER�ET 
First we focused on the sending and detecting of bits, using 

Manchester code (Phase Encoding). To transmit a "0" in t 

seconds, we turned the light on for t/2 seconds and then off for t/2 

seconds, and vice versa for a "1". To eliminate potential 

ambiguity, we agreed to begin each transmission with an extra 

"0". Thus, to send the bits "1100", we turned the light on and off 

in the pattern shown in Figure 2. In between transmissions, the 

light bulb was left off, indicating network silence. 

 

Figure 2. Pattern of on/off transitions to transmit "1100" 

We chose Ethernet [6] as our layer 2 protocol, because of its 

widespread use in homes and schools. Using 48-bit MAC 

addresses seemed unnecessarily tedious, given that we did not 

plan to have more than a handful of network interfaces on our 

simulated network. Therefore, to facilitate learning the 

fundamentals of the protocol, and to simplify our implementation, 

we decided to use just 4 bits to represent a MAC address. This 

allowed us to examine a full Ethernet frame and easily identify the 

roles played by individual bits. Our 4-bit MAC addresses ranged 

from #1 to #15, where address #0 was reserved for broadcast 

frames. 

Thus, the Ethernet frames in our simplified protocol consisted 

only of a 4-bit destination address, 4-bit source address, n-bit 

payload, and 2-bit checksum, as shown in Figure 3. A frame's 

payload could consist of any number of bits, but in practice, just 

23 bits proved to be sufficient for our simplified protocol suite. 

For the checksum, we simply counted the number of 1s in the 

addresses and payload, and then found the remainder when this 

number was divided by 4. (This checksum function is a 

substantial simplification over the cyclic redundancy check used 

by the real Ethernet protocol.) 

 

Figure 3. Simplified Ethernet frame for sending "110000" 

from address #2 to address #5. 

To avoid collisions, we waited for silence before transmitting, and 

watched the state of the light bulb during transmission, to make 

sure what we set it to matched what we saw. If not, we knew a 

collision had occurred, in which case we sent a few extra bits to 

ensure the other transmitting party also detected a collision, 

before waiting to re-transmit the same frame. On the receiving 

end, we discarded any frames consisting of fewer than 10 bits, and 

any frames with invalid checksums. 

4. �ETWORK LAYER:  IP 
In our very simplified Internet Protocol, we used two 2-bit values 

to represent an IP address. For example, the binary value 01.11 

represented the IP address 1.3. This was sufficient to let us talk 

about the value of hierarchical logical addresses. Each of our 

simplified IP packets consisted only of a destination IP address, a 

source IP address, and a payload. Each IP packet was transported 

as the sole payload of an Ethernet frame, as shown in Figure 4. 

 

Figure 4. Simplified IP packet carrying "110000" from IP 

address 1.1 to 1.2. The packet is itself the payload of an 

Ethernet frame. 

For all the technical details we were able to omit in constructing 

our simplified protocol suite, we found we could not introduce IP 

packets into our Ethernet simulation without presenting an 

Address Resolution Protocol (ARP). Using our simplified version 

of ARP, one could request an unknown MAC address by 

broadcasting an Ethernet frame to address #0 with a 4-bit payload, 

corresponding to the requested IP address, as shown in Figure 5.  

The corresponding ARP reply would contain the same 4-bit 

payload, with the requested MAC address now appearing as the 

Ethernet frame's source address, as shown in Figure 6. 

 

Figure 5. ARP Request for 1.2's MAC Address 
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Figure 6. ARP Reply from 1.2 

5. TRA�SPORT LAYER:  TCP 
We presented TCP [2] as a completely independent layer from IP, 

where a TCP packet was the payload of an IP packet, as shown in 

Figure 7. We first focused on the functionality common to both 

TCP and UDP: inter-process communication.  We chose to 

represent each process's port number as a 2-bit value.  Each TCP 

packet therefore began with a 2-bit destination port number and a 

2-bit source port number. 

 

Figure 7. TCP packet embedded inside an IP packet, 

embedded in an Ethernet frame 

We gave each TCP packet a 2-bit sequence number. Thus, in our 

model, a large message broken down into many TCP packets 

would begin with sequence #0, then #1, #2, #3, #0, #1, and so on. 

Next, we used a 1-bit flag to indicate whether this was the final 

packet in the message. Finally, we chose to have each TCP packet 

carry the 8-bit ASCII code for a single character as its payload. 

For example, the message "HELLO" would be broken down into 

5 TCP packets, with the first carrying the 8-bit code for the letter 

"H", and so on. The receiving party would send an ack 

(acknowledgement packet) for each received letter. Each ack in 

our simplified TCP model consisted only of the port numbers and 

sequence number, as shown in Figure 8. 

  

Figure 8. TCP packet #0 (carrying the letter "A") and 

corresponding ack 

In class, we introduced students to the idea of a sliding window, 

in which a number of TCP packets would be sent before any are 

acknowledged, and where an ack from the receiving party might 

acknowledge several packets at once. However, in our 

implementation, we restricted ourselves to a 1-packet window. 

So, in order to transmit "HELLO", we would first send the letter 

"H", and then wait for an ack. If no ack is received after some 

timeout, we would re-transmit the "H". Once an ack is received 

for the "H", we would then go on to transmit the "E". (This is 

essentially a stop-and-wait protocol.) 

6. IMPLEME�TATIO� 
Because the students had already completed an AP Computer 

Science course, we used Java to implement our network 

simulation software. Students were provided with two black-box 

classes: a LightSystem and a LightPanel. Upon running the 

LightSystem, students could instantiate new LightPanels, which 

would automatically connect to the LightSystem. Together, these 

two classes formed the physical layer of our network. (The 

LightSystem itself was implemented as a server, and could be 

connected to by LightPanels across the real Internet, using 

sockets. This allowed us to grade student work by testing that they 

could interoperate with our correct implementation of the 

simplified protocols.) The LightPanel API included methods for 

switching the light on, switching it off, and testing if it is on. The 

LightPanel could also be asked for its ID, which served as its 

MAC address. 

In implementing our protocol stack, we divided the traditional 

layers into a number of classes, as shown in Figure 9. Students 

implemented these classes from the bottom up, starting with the 

BitHandler class, which could broadcast and detect bit strings. 

 

Figure 9. Layers of classes used to implement our network 

simulation 

At the highest level, we created a Socket abstraction (along with a 

ServerSocket class). The Socket class allowed the user to establish 

a connection to a given IP address and port, and then send and 

receive text, one line at a time, until the socket was closed. To 

send a line of text, the Socket passed that text down to its 

TCPHandler, whose job it was to wrap each character in its own 

TCP packet, and to ensure the reliable transmission of each of 

those packets. To do so, each TCP packet was passed down to a 

MultiPortHandler, whose job it was to wrap the TCP packet in an 

IP packet, and pass that down to an IPHandler. The IPHandler 

would then place the IP packet in an Ethernet frame addressed to 

the appropriate MAC address (as found in its ARP table or 

determined from an ARP request), and would pass the frame 

down to an EthernetHandler. The EthernetHandler would convert 

the frame into a string of bits, and pass these down to a 

BitHandler (and handle collisions). The BitHandler's job was to 

inject those bits into the network by switching the light on and off 

with the appropriate timing (and to detect collisions). 

On the receiving side, the BitHandler used a thread which would 

regularly poll the LightPanel to determine if the light was on or 

off. Using a state machine, the BitHandler determined the string 
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of bits received, and passed these up to an EthernetHandler. The 

EthernetHandler's job was to parse those bits into a frame, verify 

its checksum, and pass the frame up to an IPHandler (if the frame 

was addressed to this LightPanel's MAC address, or to the 

broadcast address #0). The IPHandler would then extract the 

frame's payload and handle any received ARP request or response 

appropriately. If the frame contained an IP packet, that packet 

would be passed up to a MultiPortHandler. This class would then 

extract a TCP packet from the payload of the IP packet, and 

examine the destination port number. The MultiPortHandler 

maintained a table, with each port number registered to a different 

TCPHandler. Using this table, the TCP packet would get passed 

up to the appropriate TCPHandler. If the packet was an 

acknowledgment, the TCPHandler would send the packet 

containing the next letter in the message (if any). On the other 

hand, if the packet contained a letter, that letter would get added 

to a received message string, and an acknowledgment packet 

would be sent back. When the entire string was received, it would 

be passed up to the Socket, and eventually returned to the user as 

the next received line of text. 

7. USER I�TERFACE 
Students were provided with a LightDisplay class–a user interface 

for controlling and monitoring a light panel, as shown in Figure 

10. The LightDisplay served as an invaluable tool for monitoring 

network activity. 

 

Figure 10. Screenshot of LightDisplay window 

Whenever bits were received by a BitHandler, it would pass that 

bit string up to its registered BitListener. Students were provided 

with a BitDisplay class (shown in Figure 11), which implemented 

the BitListener interface. The BitDisplay showed the most 

recently received bit string, and allowed a user to enter a string of 

bits to send. The BitDisplay proved to be a valuable debugging 

tool, allowing us to sniff and spoof Ethernet frames. 

 

Figure 11. Screenshot of BitDisplay window 

Later on, students programmed the EthernetHandler class to 

implement the BitListener interface, thus allowing an 

EthernetHandler to register to listen for any string of bits detected 

by its BitHandler. This architecture repeated itself at each layer, 

so that an EthernetHandler passed a received frame up to a 

registered EthernetListener, which might be an EthernetDisplay or 

an IPHandler, and so on. 

8. SWITCHI�G A�D ROUTI�G 
We briefly discussed Ethernet switching in the course.  Our more 

advanced students implemented a simple Ethernet switch, which 

consisted of several EthernetHandlers–each one on a different 

LightSystem. The switch snooped on Ethernet traffic to 

unobtrustively build up a table that kept track of which MAC 

addresses could be reached from which EthernetHandler. Using 

this table, the switch would attempt to forward each received 

frame to the appropriate EthernetHandler(s), if necessary. 

We did not go into much detail concerning routing, as our primary 

goal for the course was to present the workings of the Internet at 

its endpoints–the students' computers. Thus, we emphasized that 

each machine knew which range of IP addresses would be found 

on its local area network (LAN), and that packets destined for all 

other IP addresses must be sent to the gateway machine (a router 

on the LAN whose IP address was already known to each machine 

on the LAN). Advanced students implemented a simple IP router, 

which consisted of several IPHandlers. The router was configured 

to know which range of IP addresses could be reached through 

which IPHandler. Unlike many traditional networking classes, we 

did not discuss routing algorithms and associated complexities. 

9. METAPHORS 
In our lessons, we employed a number of metaphors to teach 

networking concepts. As already emphasized, we used the light 

system metaphor as a physical layer on which to build our 

Ethernet protocol. We also compared Ethernet to a room full of 

people, all trying to talk at once, to motivate solutions to develop 

strategies for handling collisions. We then extended this metaphor 

to include multiple rooms of people, where each room played the 

role of an Ethernet segment, so that a designated person could 

play the role of an Ethernet switch by running between rooms to 

relay inter-room messages. 

To introduce IP, we compared IP packets to postcards, each 

carried on its own mail truck (Ethernet frame) destined for some 

building (host) connected by a network of roads (the physical 

layer). Here, post offices played the role of routers. This allowed 

us to emphasize that the IP packet was addressed to the packet's 

final destination, while the  Ethernet frame (truck) carrying that 

packet (postcard) might be headed to some router (post office) 

along the way. We extended this postcard metaphor for TCP, by 

discussing the problem of sending the text of a long book written 

on a large collection of individual postcards. 

Later in the course, we implemented simple applications using 

client/server architectures. Here, we compared a server to a person 

waiting to answer calls placed to a published telephone number, 

and a client to a person calling that number. When a call is 

established, each person's connected telephone plays the role of a 

socket. Many students chose to implement network games as their 

final projects. To teach them how to use sockets to create their 

own application-specific protocols, we had students act out a 2-

player game played over the telephone (simulated with cups and 

string), where two students acted as clients calling in to play a 

game, and a third student played the role of a server receiving 

their calls and passing the necessary information between them. 

We wrote down the various messages that students spoke into 

their phones, and used these as the basis for implementing a 

protocol to play the game over the network. 
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10. OMITTED TOPICS 
In our course, we presented only those areas of computer 

networking that students needed to know in order to implement 

socket-based network applications, and to understand how those 

sockets might be implemented in a simple network model. In 

choosing to focus on this slice of computer networking, we 

omitted a number of networking topics that would have been 

relevant for our students, including HTTP, email, network 

security, DNS, DHCP, network address translation, home 

networking, and wireless Ethernet.  We also left out a number of 

topics that are traditionally covered in an introductory computer 

networking class, including information theory, network topology, 

routing and inter-router protocols, network flow and congestion, 

and Internet infrastructure.  We only briefly touched on the 

history of the Internet, and we did not discuss the impact of the 

Internet on society or related ethical issues. 

11. REFLECTIO�S 
Over all, we felt the course was successful in teaching the key 

ideas behind network protocols. As we introduced each new topic, 

the students were engaged in class discussions, anticipating 

communication difficulties and developing protocols to address 

them. Ultimately, it wasn't hard to steer the conversation toward 

the simplified protocols we designed for students to implement. 

At the midpoint of the course, students performed very well on a 

comprehensive exam covering the four layers of our simulated 

network protocol stack. 

The implementation of our simulated network required the 

students to work with several advanced Java programming 

concepts from the very beginning of the course, including 

exception handling, multithreaded programming, and the use and 

implementation of listener objects. Unfortunately, all of these 

topics were needed for the very first programming assignment. 

Although students enjoyed the challenge of running a simplified 

Ethernet protocol over the light system, their interest declined as 

we implemented IP and then TCP. Much of the same coding 

issues repeated themselves at each layer, and therefore later 

assignments seemed less novel to the students. Not surprisingly, 

the highlight of the course for our students proved to be the final 

project, in which students worked in small groups to implement 

their own network applications. 

Our greatest difficulty in the course concerned the first 

assignment, in which each student's program needed to examine a 

blinking light panel to determine the received sequence of bits. 

Unfortunately, later assignments were very sensitive to subtleties 

in the implementation of the bit detection algorithm. It was not 

uncommon for a student's algorithm to work well enough for the 

Ethernet assignment, only to cause problems on the IP 

assignment. We therefore eventually provided students with an 

alternative implementation of the physical layer, which 

transmitted and received bursts of bits, instead of using flashing 

lights. This implementation solved our reliability issues, but 

noticeably lost the magic of communicating by flashing light. 

We have considered implementing a physical layer that shows 

flashing lights, but which detects single bits and network silence 

automatically, and provides a higher level API. Perhaps the light 

system is too low-level, but it certainly proved to be a helpful 

metaphor and a great starting point for our discussions. And there 

was definitely something very satisfying about building so much 

functionality on top of a flashing light. 
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