
Teaching Simplified Network Protocols
Dave Feinberg

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

(412) 268-4731

fberg@cs.cmu.edu

ABSTRACT

We created a course that, beginning from a hypothetical shared

light bulb as our physical layer, introduced students to a hierarchy

of simplified versions of network protocols, including Ethernet,

IP, and TCP. This paper describes those simplified protocols,

along with the Java framework students used to implement and

simulate them.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information

Science Education – computer science education. C.2.2

[Computer-Communication �etworks]: Network Protocols –

protocol architecture (OSI model).

General Terms
Algorithms, Design

Keywords
Network, Protocol, Simulation, TCP, IP, Ethernet, Programming

1. I�TRODUCTIO�
This paper describes the content of a course entitled "Network

Programming," which we taught in the spring semesters of 2006

and 2008 to a total of 48 high school students at The Harker

School, an independent school in San Jose, California. In the first

half of the course, we introduced students to simplified versions

of low-level network protocols (Ethernet, IP, and TCP) which

students simulated using a Java framework we provided. At the

midpoint of the class, students used their simulated networks to

implement their own sockets. In the second half of the course, we

switched over to using Java's built-in support for real socket

connections. Students worked together in small groups, using

sockets to write their own network applications, including

networked games, chat programs, etc.

This paper focuses on the first part of the course–particularly the

simplified network protocols we developed for teaching Ethernet,

IP, and TCP. Lab-based networking courses typically fall into two

categories: those in which students configure and experiment

with networks, and those in which students implement network

protocols [4]. Because we were teaching students who were not

likely to continue studying computer networks beyond this course,

there was no reason to provide practical training with real network

traffic. Rather, we wanted to give our students a hands-on

experience with network protocol concepts. We therefore decided

to have students implement low-level network protocols on a

simulated computer network. Although a number of network

simulation frameworks have been developed for use in teaching,

none met the precise needs for our course. Some simulation tools

required students to implement subsets of the TCP/IP protocols,

which could interoperate with industry implementations [1].

However, we felt that this would be unnecessarily detailed and

time-consuming work for our students, and that it might obscure

the main concepts. Some network simulation frameworks left only

one layer for students to implement [3], while others allowed

students to implement multiple layers of protocols [5, 7]. But at

their lowest level, even the most flexible network simulation tools

we looked at were based on the transmitting and receiving of

frames. We felt this concealed too much of the physical layer and

its relation to the data link layer. To allow students to explore

unreliable networks, many tools could be configured to corrupt

and drop frames at random. Such a feature, although clearly

beneficial, also seemed contrived. We wanted to use a simulation

model in which collisions could arise naturally.

In light of all this, we set out to create our own simplified protocol

stack, spanning the layers from sockets down to bit detection. To

minimize implementation times and remove confusing details, we

chose to simplify common protocols so that they became small

enough that our students could fully implement them in just half a

semester, using our network simulation framework. Students

would need to understand the purpose of every bit we used, so we

wanted to reduce the protocols to their most essential features,

focusing on those bits that really count. We made sure that

students understood that we were omitting many details in the real

Ethernet and TCP/IP specifications. We believe that our idealized

protocols were more effective than the real ones for teaching our

students to master fundamental networking concepts.

2. PHYSICAL LAYER: LIGHTS
Our physical layer began from perhaps the simplest possible entity

that could support communication: a shared bit. This layer took

two forms: a story about flashing lights, and a set of black-box

Java classes that simulated those flashing lights. In the story, we

imagine a dozen people know they will be imprisoned, one person

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.

Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.

143

per cell. Each cell has a single light panel, featuring a light bulb,

on/off buttons, and a unique ID number. Pressing the "on" button

on one light panel turns on the light bulbs in every cell. Likewise,

the "off" button turns off everyone's lights. In other words, all

light panels are connected to a single light system, as illustrated in

Figure 1.

Figure 1. Three hypothetical light panels

connected to a light system

Knowing all this, the dozen people conspire to use the light

system to communicate with each other. They know they can

represent any information as a string of bits. We asked students to

consider how the light panels could be used to transmit bits, and

what difficulties would arise. The results of that discussion served

as the basis for introducing our simplified Ethernet protocol.

3. DATA LI�K LAYER: ETHER�ET
First we focused on the sending and detecting of bits, using

Manchester code (Phase Encoding). To transmit a "0" in t

seconds, we turned the light on for t/2 seconds and then off for t/2

seconds, and vice versa for a "1". To eliminate potential

ambiguity, we agreed to begin each transmission with an extra

"0". Thus, to send the bits "1100", we turned the light on and off

in the pattern shown in Figure 2. In between transmissions, the

light bulb was left off, indicating network silence.

Figure 2. Pattern of on/off transitions to transmit "1100"

We chose Ethernet [6] as our layer 2 protocol, because of its

widespread use in homes and schools. Using 48-bit MAC

addresses seemed unnecessarily tedious, given that we did not

plan to have more than a handful of network interfaces on our

simulated network. Therefore, to facilitate learning the

fundamentals of the protocol, and to simplify our implementation,

we decided to use just 4 bits to represent a MAC address. This

allowed us to examine a full Ethernet frame and easily identify the

roles played by individual bits. Our 4-bit MAC addresses ranged

from #1 to #15, where address #0 was reserved for broadcast

frames.

Thus, the Ethernet frames in our simplified protocol consisted

only of a 4-bit destination address, 4-bit source address, n-bit

payload, and 2-bit checksum, as shown in Figure 3. A frame's

payload could consist of any number of bits, but in practice, just

23 bits proved to be sufficient for our simplified protocol suite.

For the checksum, we simply counted the number of 1s in the

addresses and payload, and then found the remainder when this

number was divided by 4. (This checksum function is a

substantial simplification over the cyclic redundancy check used

by the real Ethernet protocol.)

Figure 3. Simplified Ethernet frame for sending "110000"

from address #2 to address #5.

To avoid collisions, we waited for silence before transmitting, and

watched the state of the light bulb during transmission, to make

sure what we set it to matched what we saw. If not, we knew a

collision had occurred, in which case we sent a few extra bits to

ensure the other transmitting party also detected a collision,

before waiting to re-transmit the same frame. On the receiving

end, we discarded any frames consisting of fewer than 10 bits, and

any frames with invalid checksums.

4. �ETWORK LAYER: IP
In our very simplified Internet Protocol, we used two 2-bit values

to represent an IP address. For example, the binary value 01.11

represented the IP address 1.3. This was sufficient to let us talk

about the value of hierarchical logical addresses. Each of our

simplified IP packets consisted only of a destination IP address, a

source IP address, and a payload. Each IP packet was transported

as the sole payload of an Ethernet frame, as shown in Figure 4.

Figure 4. Simplified IP packet carrying "110000" from IP

address 1.1 to 1.2. The packet is itself the payload of an

Ethernet frame.

For all the technical details we were able to omit in constructing

our simplified protocol suite, we found we could not introduce IP

packets into our Ethernet simulation without presenting an

Address Resolution Protocol (ARP). Using our simplified version

of ARP, one could request an unknown MAC address by

broadcasting an Ethernet frame to address #0 with a 4-bit payload,

corresponding to the requested IP address, as shown in Figure 5.

The corresponding ARP reply would contain the same 4-bit

payload, with the requested MAC address now appearing as the

Ethernet frame's source address, as shown in Figure 6.

Figure 5. ARP Request for 1.2's MAC Address

144

Figure 6. ARP Reply from 1.2

5. TRA�SPORT LAYER: TCP
We presented TCP [2] as a completely independent layer from IP,

where a TCP packet was the payload of an IP packet, as shown in

Figure 7. We first focused on the functionality common to both

TCP and UDP: inter-process communication. We chose to

represent each process's port number as a 2-bit value. Each TCP

packet therefore began with a 2-bit destination port number and a

2-bit source port number.

Figure 7. TCP packet embedded inside an IP packet,

embedded in an Ethernet frame

We gave each TCP packet a 2-bit sequence number. Thus, in our

model, a large message broken down into many TCP packets

would begin with sequence #0, then #1, #2, #3, #0, #1, and so on.

Next, we used a 1-bit flag to indicate whether this was the final

packet in the message. Finally, we chose to have each TCP packet

carry the 8-bit ASCII code for a single character as its payload.

For example, the message "HELLO" would be broken down into

5 TCP packets, with the first carrying the 8-bit code for the letter

"H", and so on. The receiving party would send an ack

(acknowledgement packet) for each received letter. Each ack in

our simplified TCP model consisted only of the port numbers and

sequence number, as shown in Figure 8.

Figure 8. TCP packet #0 (carrying the letter "A") and

corresponding ack

In class, we introduced students to the idea of a sliding window,

in which a number of TCP packets would be sent before any are

acknowledged, and where an ack from the receiving party might

acknowledge several packets at once. However, in our

implementation, we restricted ourselves to a 1-packet window.

So, in order to transmit "HELLO", we would first send the letter

"H", and then wait for an ack. If no ack is received after some

timeout, we would re-transmit the "H". Once an ack is received

for the "H", we would then go on to transmit the "E". (This is

essentially a stop-and-wait protocol.)

6. IMPLEME�TATIO�
Because the students had already completed an AP Computer

Science course, we used Java to implement our network

simulation software. Students were provided with two black-box

classes: a LightSystem and a LightPanel. Upon running the

LightSystem, students could instantiate new LightPanels, which

would automatically connect to the LightSystem. Together, these

two classes formed the physical layer of our network. (The

LightSystem itself was implemented as a server, and could be

connected to by LightPanels across the real Internet, using

sockets. This allowed us to grade student work by testing that they

could interoperate with our correct implementation of the

simplified protocols.) The LightPanel API included methods for

switching the light on, switching it off, and testing if it is on. The

LightPanel could also be asked for its ID, which served as its

MAC address.

In implementing our protocol stack, we divided the traditional

layers into a number of classes, as shown in Figure 9. Students

implemented these classes from the bottom up, starting with the

BitHandler class, which could broadcast and detect bit strings.

Figure 9. Layers of classes used to implement our network

simulation

At the highest level, we created a Socket abstraction (along with a

ServerSocket class). The Socket class allowed the user to establish

a connection to a given IP address and port, and then send and

receive text, one line at a time, until the socket was closed. To

send a line of text, the Socket passed that text down to its

TCPHandler, whose job it was to wrap each character in its own

TCP packet, and to ensure the reliable transmission of each of

those packets. To do so, each TCP packet was passed down to a

MultiPortHandler, whose job it was to wrap the TCP packet in an

IP packet, and pass that down to an IPHandler. The IPHandler

would then place the IP packet in an Ethernet frame addressed to

the appropriate MAC address (as found in its ARP table or

determined from an ARP request), and would pass the frame

down to an EthernetHandler. The EthernetHandler would convert

the frame into a string of bits, and pass these down to a

BitHandler (and handle collisions). The BitHandler's job was to

inject those bits into the network by switching the light on and off

with the appropriate timing (and to detect collisions).

On the receiving side, the BitHandler used a thread which would

regularly poll the LightPanel to determine if the light was on or

off. Using a state machine, the BitHandler determined the string

145

of bits received, and passed these up to an EthernetHandler. The

EthernetHandler's job was to parse those bits into a frame, verify

its checksum, and pass the frame up to an IPHandler (if the frame

was addressed to this LightPanel's MAC address, or to the

broadcast address #0). The IPHandler would then extract the

frame's payload and handle any received ARP request or response

appropriately. If the frame contained an IP packet, that packet

would be passed up to a MultiPortHandler. This class would then

extract a TCP packet from the payload of the IP packet, and

examine the destination port number. The MultiPortHandler

maintained a table, with each port number registered to a different

TCPHandler. Using this table, the TCP packet would get passed

up to the appropriate TCPHandler. If the packet was an

acknowledgment, the TCPHandler would send the packet

containing the next letter in the message (if any). On the other

hand, if the packet contained a letter, that letter would get added

to a received message string, and an acknowledgment packet

would be sent back. When the entire string was received, it would

be passed up to the Socket, and eventually returned to the user as

the next received line of text.

7. USER I�TERFACE
Students were provided with a LightDisplay class–a user interface

for controlling and monitoring a light panel, as shown in Figure

10. The LightDisplay served as an invaluable tool for monitoring

network activity.

Figure 10. Screenshot of LightDisplay window

Whenever bits were received by a BitHandler, it would pass that

bit string up to its registered BitListener. Students were provided

with a BitDisplay class (shown in Figure 11), which implemented

the BitListener interface. The BitDisplay showed the most

recently received bit string, and allowed a user to enter a string of

bits to send. The BitDisplay proved to be a valuable debugging

tool, allowing us to sniff and spoof Ethernet frames.

Figure 11. Screenshot of BitDisplay window

Later on, students programmed the EthernetHandler class to

implement the BitListener interface, thus allowing an

EthernetHandler to register to listen for any string of bits detected

by its BitHandler. This architecture repeated itself at each layer,

so that an EthernetHandler passed a received frame up to a

registered EthernetListener, which might be an EthernetDisplay or

an IPHandler, and so on.

8. SWITCHI�G A�D ROUTI�G
We briefly discussed Ethernet switching in the course. Our more

advanced students implemented a simple Ethernet switch, which

consisted of several EthernetHandlers–each one on a different

LightSystem. The switch snooped on Ethernet traffic to

unobtrustively build up a table that kept track of which MAC

addresses could be reached from which EthernetHandler. Using

this table, the switch would attempt to forward each received

frame to the appropriate EthernetHandler(s), if necessary.

We did not go into much detail concerning routing, as our primary

goal for the course was to present the workings of the Internet at

its endpoints–the students' computers. Thus, we emphasized that

each machine knew which range of IP addresses would be found

on its local area network (LAN), and that packets destined for all

other IP addresses must be sent to the gateway machine (a router

on the LAN whose IP address was already known to each machine

on the LAN). Advanced students implemented a simple IP router,

which consisted of several IPHandlers. The router was configured

to know which range of IP addresses could be reached through

which IPHandler. Unlike many traditional networking classes, we

did not discuss routing algorithms and associated complexities.

9. METAPHORS
In our lessons, we employed a number of metaphors to teach

networking concepts. As already emphasized, we used the light

system metaphor as a physical layer on which to build our

Ethernet protocol. We also compared Ethernet to a room full of

people, all trying to talk at once, to motivate solutions to develop

strategies for handling collisions. We then extended this metaphor

to include multiple rooms of people, where each room played the

role of an Ethernet segment, so that a designated person could

play the role of an Ethernet switch by running between rooms to

relay inter-room messages.

To introduce IP, we compared IP packets to postcards, each

carried on its own mail truck (Ethernet frame) destined for some

building (host) connected by a network of roads (the physical

layer). Here, post offices played the role of routers. This allowed

us to emphasize that the IP packet was addressed to the packet's

final destination, while the Ethernet frame (truck) carrying that

packet (postcard) might be headed to some router (post office)

along the way. We extended this postcard metaphor for TCP, by

discussing the problem of sending the text of a long book written

on a large collection of individual postcards.

Later in the course, we implemented simple applications using

client/server architectures. Here, we compared a server to a person

waiting to answer calls placed to a published telephone number,

and a client to a person calling that number. When a call is

established, each person's connected telephone plays the role of a

socket. Many students chose to implement network games as their

final projects. To teach them how to use sockets to create their

own application-specific protocols, we had students act out a 2-

player game played over the telephone (simulated with cups and

string), where two students acted as clients calling in to play a

game, and a third student played the role of a server receiving

their calls and passing the necessary information between them.

We wrote down the various messages that students spoke into

their phones, and used these as the basis for implementing a

protocol to play the game over the network.

146

10. OMITTED TOPICS
In our course, we presented only those areas of computer

networking that students needed to know in order to implement

socket-based network applications, and to understand how those

sockets might be implemented in a simple network model. In

choosing to focus on this slice of computer networking, we

omitted a number of networking topics that would have been

relevant for our students, including HTTP, email, network

security, DNS, DHCP, network address translation, home

networking, and wireless Ethernet. We also left out a number of

topics that are traditionally covered in an introductory computer

networking class, including information theory, network topology,

routing and inter-router protocols, network flow and congestion,

and Internet infrastructure. We only briefly touched on the

history of the Internet, and we did not discuss the impact of the

Internet on society or related ethical issues.

11. REFLECTIO�S
Over all, we felt the course was successful in teaching the key

ideas behind network protocols. As we introduced each new topic,

the students were engaged in class discussions, anticipating

communication difficulties and developing protocols to address

them. Ultimately, it wasn't hard to steer the conversation toward

the simplified protocols we designed for students to implement.

At the midpoint of the course, students performed very well on a

comprehensive exam covering the four layers of our simulated

network protocol stack.

The implementation of our simulated network required the

students to work with several advanced Java programming

concepts from the very beginning of the course, including

exception handling, multithreaded programming, and the use and

implementation of listener objects. Unfortunately, all of these

topics were needed for the very first programming assignment.

Although students enjoyed the challenge of running a simplified

Ethernet protocol over the light system, their interest declined as

we implemented IP and then TCP. Much of the same coding

issues repeated themselves at each layer, and therefore later

assignments seemed less novel to the students. Not surprisingly,

the highlight of the course for our students proved to be the final

project, in which students worked in small groups to implement

their own network applications.

Our greatest difficulty in the course concerned the first

assignment, in which each student's program needed to examine a

blinking light panel to determine the received sequence of bits.

Unfortunately, later assignments were very sensitive to subtleties

in the implementation of the bit detection algorithm. It was not

uncommon for a student's algorithm to work well enough for the

Ethernet assignment, only to cause problems on the IP

assignment. We therefore eventually provided students with an

alternative implementation of the physical layer, which

transmitted and received bursts of bits, instead of using flashing

lights. This implementation solved our reliability issues, but

noticeably lost the magic of communicating by flashing light.

We have considered implementing a physical layer that shows

flashing lights, but which detects single bits and network silence

automatically, and provides a higher level API. Perhaps the light

system is too low-level, but it certainly proved to be a helpful

metaphor and a great starting point for our discussions. And there

was definitely something very satisfying about building so much

functionality on top of a flashing light.

12. REFERE�CES
[1] Casado, M. and McKeown, N. 2005. The virtual network

system. In Proceedings of the 36th SIGCSE Technical

Symposium on Computer Science Education (St. Louis,

Missouri, USA, February 23 - 27, 2005). SIGCSE '05. ACM,

New York, NY, 76-80. DOI=

http://doi.acm.org/10.1145/1047344.1047383

[2] Cerf, V. and Kahn, R. 1974. A protocol for packet network

intercommunication. IEEE Transactions on Communications

22, 5 (May 1974), 637-648.

[3] Elsharnouby, T. and Shankar, A. U. 2005. Using SeSFJava

in teaching introductory network courses. In Proceedings of

the 36th SIGCSE Technical Symposium on Computer

Science Education (St. Louis, Missouri, USA, February 23 -

27, 2005). SIGCSE '05. ACM, New York, NY, 67-71. DOI=

http://doi.acm.org/10.1145/1047344.1047381

[4] Kurose, J., Liebeherr, J., Ostermann, S., and Ott-Boisseau, T.

2002. Workshop report: ACM SIGCOMM workshop on

computer networking: curriculum designs and educational

challenges (Pittsburgh, Pennsylvania, USA, August 20,

2002).

[5] McDonald, C. 1991. A network specification language and

execution environment for undergraduate teaching. In

Proceedings of the Twenty-Second SIGCSE Technical

Symposium on Computer Science Education (San Antonio,

Texas, United States, March 07 - 08, 1991). SIGCSE '91.

ACM, New York, NY, 25-34. DOI=

http://doi.acm.org/10.1145/107004.107012

[6] Metcalfe, R. M. and Boggs, D. R. 1976. Ethernet: distributed

packet switching for local computer networks. Commun.

ACM 19, 7 (Jul. 1976), 395-404. DOI=

http://doi.acm.org/10.1145/360248.360253

[7] Tymann, P. 1991. VNET: a tool for teaching computer

networking to undergraduates. In Proceedings of the Twenty-

Second SIGCSE Technical Symposium on Computer

Science Education (San Antonio, Texas, United States,

March 07 - 08, 1991). SIGCSE '91. ACM, New York, NY,

21-24. DOI= http://doi.acm.org/10.1145/107004.107011

147

