
Discovering Python
Workshop Vilnius 2017
Michael Weigend

Draft version - to be extended

Just choose something you are interested in and start.
If you need more information about Python use the Python manual.

Part 1

1 Expression Statements
Use the interactive mode of IDLE3 (the Python Shell) and type in these expressions. Can
you explain the results?

>>> 3 * "Hurray "

>>> 2/3

>>> 2//3

>>> type(3/2)

>>> -2**-3
>>> 99 ** 234

>>> not(2.0 > 2)

>>> 'a' in 'Delft'

>>> len('123')

>>> type(len)

Important Shortcuts for the IDLE Shell:

ALT + P previous command
ALT + N next command

2 Interactive Programs

Use IDLE3. Open a new editor window (file|New file). Save the file somewhere. Use a file

name with the extension .py, for example zoo.py.

Write this program, save it (CRTL + S) and test it (Run|Run module or F5).

print ("Welcome to the zoo!")

age = float(input("Your age: "))

if 14 < age < 60:

 print ("Please pay 10 Euros")

else:

 print ("Please pay 5 Euros")

Write an interactive program, which does this:

The user is asked for height and weight. The program calculates the bmi (body-mass-index)
and prints a result. Example dialogue:

Your height (in meters): 1.8

Your weight (in kg): 80

Your BMI is 24.

Your weight is just fine.

Some Hints

bmi = weight / (height * height)

The normal bmi is 18.5 to 24.9. Values between 25 and 30 indicate overweight. A value
greater than 30 indicates severe overweight. A bmi lower than 18.5 indicates underweight,
and if it is lower than 16 the underweight is critical.

3 Sequences

Lists, strings and tuples are sequences.

Examples: [1, 2, 3], "word", ("Tom", 20)

Lists are mutable, tuples and strings are not. Try this:

>>> a = [1, 2, 3]

>>> a[0]

>>> a[1]

>>> a[-1

>>> del a[1]

>>> a

>>> b = "Hallo"

>>> b[0]

>>> del b[0] # you will get an error message

Sequences have common attributes and methods. For example they have a length and you
can concatenate them. Try this

>>> len ("word")
>>> len ([])
>>> len ([[[]]])
>>> s = [1, [2, 3, 4]]

>>> len(s)
>>> len ([[],[]])

>>> s =["moon", "honey", "ship", "space"]

>>> print (s[0])
>>> print (s[1]+s[0]
>>> print s[-1]+s[-2])
>>> for word in s:
 print (word[0])

The range function generates a range-Object representing a sequence of numbers. If you
want to see the numbers you must create a list or another explicit sequence. Try this :

>>> range(5)
>>> list(range(5)
>>> list(range(2, 10))
>>> list(range (-2, 2))
>>> for i in range(10):
 print(i)

4 Dictionaries

This statement creates a dictionary mapping e-numbers to chemical substances:

>>> d={'E260':'acetic acid',
 'E200':'Sorbic acid',
 'E210':'Benzoic acid'}

Try these statements.

a) >>> d['E210']
b) >>> print (d.keys())
c) >>> del d['E210']
 >>> print (d.values())

d) >>> for k in d.keys():
 print k+': '+d[k]

e) >>> d['E239']='potassium nitrate'
 >>> for k in d.keys(): print (k, d[k])

Write an interactive program that reads a E-number and returns the name of the
corresponding chemical. (You find a solution in the workshop folder.)

5 Turtle Graphics – Experiments With Recursive Functions

Python supports the famous Logo Turtle graphics. Open the script triangle.py with IDLE

and run it.
triangle.py

from turtle import *

def triangle(n): # functon definition draw a triangle

 for i in range(3):

 forward(n)

 right(120)

def shape(n):

 if n >1:

 triangle(n)

 right(60)

 shape(n/2) # recursive function call

clear()

speed(5) # drawing speed

left(90)

shape(200)

hideturtle()

Try to create a different structure using a recursive function, for example this:

6 Quicksort and Assertions

quicksort

from random import randint

def qsort (sequence):

 s = sequence[:] #1 s is a copy of sequence

 if s == []:

 result = s #2 end of recursion

 else:

 x = s[0] #3 take first element

 s1 = [] #4 split remaining list

 s2 = []

 for i in s[1:]:

 if i <= x:

 s1.append(i)

 else:

 s2.append(i)

 result = qsort(s1) + [x] + qsort(s2) # recursive calls

 return result

main program

s = [randint(0, 10) for i in range(10)] #5 ten random numbers

print (s)

print (qsort(s))

Tasks
a) Start IDLE and open this program. You find it in the workshop folder. Test it.
b) Modify statement #5. It should create a list with 20 random numbers between 0 and 100.
c) What happens, when you replace statement #1 by this line?
 s = sequence

d) Add some assert statements that check the logical correctness, for example:
assert len(result) == len(sequence)

assert result[0] = min (sequence)

7 Object Oriented Modelling

Use IDLE3 and open the script volume_start.py. You find it in the workshop folder.

Execute the script and then test the class Volume by entering a few statements in the

Python Shell window (see image):

>>> bottle = Volume(2, "L")

>>> glass = Volume(200, "mL")

>>> print (glass)

>>> print(bottle.add(glass))

Tasks

a) Change the name of the method add() to __add__() . Execute the script again and try

these statements
>>> a = Volume(20, "ml")

>>> print(a + a + a)

b) Add another method which implements multiplication of volumes:

 def __mul__ (self, x):

 …

>>> a = Volume(20, "mL")

>>> print (a * 20)

400.0 ml

Part 2 GUI Programming and Raspberry Py

Choose one of these projects.

Project 1 Text Editor

This is a minimalist XP project.

The Metaphor

The goal is to develop an editor for a special purpose (love letters, letters in English,
reporting accidents, writing experiment records …) and a special group of users (girls, boys,
policemen, …)

Choose a specific metaphor for your project (for example "Letter fairy. A program that
supports writing a letter in a foreign language.").

Release Planning
Write down a few stories that describe the product that you are intending to create. Example:

 GUI with pull down menus.

 Boiler plates (text modules) for frequently used phrases

 The user can load and save text files

 The user can change the background colour

Architectural Spike.
Try out the python programs in the folder "editor". Choose an appropriate program as a
starting point for your project.

Iterations
In each iteration you implement a story. You implement a story by editing the existing
program and adding some features. Check the other scripts and steel ideas from them.

Some Background Information
The components of a GUI are called widgets. Examples are windows (instances of the class
Tk), Labels (instances of the class Label) and Buttons (instances of the class Button).
You can configure the attributes (options) of widgets in two ways:

 Using keyword parameters when you create a widget. Example:

self.label1=Label(master=self.window, bg="green")

 Calling the method config(). Example: self.label1.config(bg="green")

Some Attributes(Options) and Methods of Widgets

Option Explanation

bd, borderwidth integer that determines the width of a border, example bd=5

bg, background background colour. examples:. bg='#23FF10', bg='red',

bg='blue', bg='green'

fg, foreground foreground colour or text colour

font Font descriptor, for example: font=('Arial', 20) means

font Arial with a height of 20 points.

height height of a widget

image name of an image object that is displayed on a widget

justify Justify text on a widget, values:

CENTER, LEFT, RIGHT

relief form of a boarder, values:
SUNKEN, RAISED, GROOVE, RIDGE, FLAT

text text on a widget

width width of a widget

Table 1: Standard attributes of widgets

Method Explanation

after (ms ,

func[,arg1[,…]])

Call a function after ms milliseconds

bell() Ring a bell
cget(option) Returns the value of the specified widget
config(option1=value1, …)

Configue a widget
label.config(text='new text')

pack() Layout. Put the widget on its master widget

Table 2: Some common methods of widgets

Project 2 Visualizing a Mandelbrot Set

You find this program in the workshop folder.

mandelbrot.pyw

from tkinter import *

RADIUS = 2.0

ZOOM = 50.0

class Mandelbrot:

 def __init__(self):

 self.window = Tk()

 self.image = PhotoImage(width=200,

height=200)

 self.image_label =

Label(master=self.window,

 image=self.image)

 self.image_label.pack()

 self.draw()

 self.window.mainloop()

 def draw(self):

 interval = [x/ZOOM for x in range(-100, 100)] #1

 mandelbrot = [(x, y) for x in interval

 for y in interval

 if self.test(x, y)]

 for x, y in mandelbrot:

 self.image.put("#0000ff", (int(ZOOM*x+100), int(ZOOM*y+100)))

 def test (self, x, y):

 c = x + 1j * y # j is the imaginary number i

 z = 0

 for i in range(20):

 if abs (z)< RADIUS:

 z = z*z - c

 else: return False # not in the Mandelbrot set

 return True # element of the Mandelbrot set

m = Mandelbrot()

Comment
#1: This ís called a list display. It is a very concise way to define a list. In this case

interval is a list of 200 numbers from -2.0 to +2.0.

Tasks
1) There are two constants RADIUS and ZOOM. What happens when you change these?
Find out the meaning of these constants.
2) Change the colors of the background and the points of the Mandelbrot set

Project 3 Image Processing

from tkinter import *

class App:

 def __init__(self):

 self.filename="manchester_6.ppm"

 self.window = Tk()

 self.pic = PhotoImage(file= self.filename)

 self.c = Canvas(self.window, width=self.pic.width(),

 height=self.pic.height())

 self.c.pack()

 self.c.create_image(0, 0, anchor=NW, image=self.pic)

 self.ExtractButton = Button(master=self.window,

 text="Find Words",

 command=self.extract)

 self.ExtractButton.pack()

 self.window.mainloop()

 def extract(self):

 w = self.pic.width()

 h = self.pic.height()

 colors = [self.pic.get(i,0) for i in [0, 1, 2, 3]]

 pixels = [(x, y) for x in range(w) for y in range(h)]

 for (x, y) in pixels:

 if self.pic.get(x, y) not in colors:

 self.pic.put("white", to=(x, y))

 else:

 self.pic.put("{black black} {black black}", to=(x, y))

App()

Task
This time you are the teacher. Invent a few tasks that are based on this script.

Special Projects for the Raspberry Pi

Make sure that you have copied the workshop folder to your home directory on the SD card
of your RPi.

Project RPi1 Blinking LED

Connect an LED and a resistor (120 Ohms) to the GPIO according to the wiring diagram. At
Pin 1 of the GPIO you can see “P1” on the board of the RPi. The shorter Pin of the LED is (-)
and must be connected to Pin 10 of the GPIO, the longer Pin is (+).

blinking:led.py

from RPi import GPIO

from time import sleep

GPIO.setmode(GPIO.BOARD)

GPIO.setup(10, GPIO.OUT) #1 Pin 10 of the GPIO is Output

while True: #2 repeat forever

 GPIO.output(10, False) #3 set Pin 10 on low voltage

 sleep(0.5) #4 wait

 GPIO.output(10, True) #5 set Pin 10 on high voltage

 sleep(0.5)

Open this program and run it. The LED should blink. You can stop the program by a
keyboard interrupt. Use ctrl + C.

Task: Make the LED signaling “SOS”!

Project RPi2 Logging Temperature Data

Connect the temperature sensor according to the wiring diagram. Pin 1 of the GPIO is
marked with P1. The DS18B20 or DS18S20 is shown from above. Ask an expert for
checking the wiring before connecting the RPi to the power supply.

Open an LX-terminal and type these commands:

sudo modprobe wire

sudo modprobe w1-gpio

sudo modprobe w1-therm

Find the directory of the thermometer (see image) and read the file w1_slave.

Start IDLE 3. Click on File/Open and open the file
/home/pi/workshop/temperature.py

XYZ is the identifier of the memory stick.

temperature.py

import os #1

os.system("modprobe wire")

os.system("modprobe w1-gpio")

os.system("modprobe w1-therm") #2

for d in os.listdir("/sys/bus/w1/devices"):

 if d.startswith("10") or d.startswith("28"):

 deviceFile = "/sys/bus/w1/devices/" + d + "/w1_slave" #3

def readTemp():

 ok = False

 while not ok:

 f = open(deviceFile, "r")

 firstLine, secondLine = f.readlines() #4

 f.close()

 if firstLine.find("YES") != -1:

 ok = True #5

 tempString = secondLine.split("=")[1] #6

 return int(tempString)/1000

while True:

 print(readTemp())

 time.sleep(1)

Comments
#1: The module os contains functions that are related to the operating system.
#2: Start the program modeprobe.
#3: You have found the file containing the temperature data
#4: Read the two lines of the text file.
#5: The word YES has been found in the first line. The data are valid. The loop can be left.
#6: The second line is split in two parts. The second part is the temperature string.

Task
Make the output of this program nicer, for example:
21.0 °C

21.2 °C

21.3 °C

…

Project RPi3 The Camera Module
Ask an expert (a person who has done this before) to connect the camera module. You can
use the IR camera module (noIR) which does not filter IR light. Then you can use this
camera in the dark with an IR LED as illumination.

Open an LXTerminal and type
raspistill – v – o image.jpg

You will see the camera live image for five seconds. Then it is stored in the file image.jpg.

Start the program photoshooting.py. It takes a photo each 10 seconds and stores it.

References
Most program examples and images are taken from these books:
Michael Weigend: Python 3 lernen und professionell anwenden, Heidelberg (mitp) 2013
Michael Weigend: Raspberry Pi programmieren mit Python, Heidelberg (mitp) 2014
Michael Weigend: Raspberry Pi für Kids, Heidelberg (mitp) 2014

